EEE 241
 ANALOG ELECTRONICS I
 Lectures 2\&3-Single Transistor Amplifiers

DR NORLAILI MOHD NOH

3.3 Basic Single-Transistor Amplifier Stages

3 different configurations :

1. Common-emitter

Common-source

Signal applied to: B
Amplified output taken from :

C
D
2. Common-collector (emitter follower)

Common-drain (source follower)

Signal applied to: B
G
Amplified output taken from :

E
S
3. Common-base

Common-gate

Signal applied to: E S

Amplified output taken from :

C
D

Common-emitter configuration

In forward active :

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{S}} \exp \frac{\mathrm{v}_{\mathrm{i}}}{\mathrm{~V}_{\mathrm{T}}} \\
& \mathrm{I}_{\mathrm{s}}=\text { saturated current } \\
& \mathrm{I}_{\mathrm{b}}=\frac{\mathrm{I}_{\mathrm{c}}}{\beta_{\mathrm{F}}}=\frac{\mathrm{I}_{\mathrm{S}}}{\beta_{\mathrm{F}}} \exp \frac{\mathrm{v}_{\mathrm{i}}}{\mathrm{~V}_{\mathrm{T}}}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{o}} & =\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{c}} \mathrm{R}_{\mathrm{C}} \\
& =\mathrm{V}_{\mathrm{CC}}-\mathrm{R}_{\mathrm{C}} \mathrm{I}_{\mathrm{s}} \exp \frac{\mathrm{~V}_{\mathrm{i}}}{\mathrm{~V}_{\mathrm{T}}}
\end{aligned}
$$

$$
\beta_{\mathrm{F}}=\text { forward current gain }
$$

When V_{o} approaches 0 (i.e. $\mathrm{V}_{\text {ce }}$ approaches 0), the $\mathrm{C}-\mathrm{B}$ junction becomes feedback and the device enters saturation. Once the transistor becomes saturated, the output voltage and collector current take on nearly constant values :

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CE}(\mathrm{sat})} \\
& \mathrm{I}_{\mathrm{c}}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}}{\mathrm{R}_{\mathrm{C}}}
\end{aligned}
$$

When V_{o} approaches 0 (i.e. $\mathrm{V}_{\text {ce }}$ approaches 0), the $\mathrm{C}-\mathrm{B}$ junction becomes feedback and the device enters saturation. Once the transistor becomes saturated, the output voltage and collector current take on nearly constant values :

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CE}(\mathrm{sat})} \\
& \mathrm{I}_{\mathrm{c}}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}}{\mathrm{R}_{\mathrm{C}}}
\end{aligned}
$$

When $V_{i}=0$, the transistor operates in the cut off state (as B-E and B-C junctions are both reverse bias) and no current flows other than leakage current I_{co}.

In saturation :

When V_{i} is high and $>V_{0}$, the $C-B$ junction is forward bias. Thus, device is in the saturation region. As V_{i} is high, I_{b} is also high. Forward current gain $\beta_{F}=I_{c} / I_{b}$. Forward current gain β_{F} reduces as transistor leaves the forward-active region of operation and moves into saturation.

In the forward-active region, small changes in the input voltage can give rise to large changes in the output voltage. The circuit thus provides voltage gain.
When $V_{i}=0, I_{b}=0$ and $I_{c}=0 . V_{c c}=I_{c} R_{C}+V_{o}$ and since $I_{c}=0, V_{o}=V_{c c}$.
This is the device operating in the cut off region.

$$
\begin{aligned}
\mathrm{V}_{\mathrm{o}} & =\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{c}} \mathrm{R}_{\mathrm{C}} \\
& =\mathrm{V}_{\mathrm{CC}}-\mathrm{R}_{\mathrm{C}} \mathrm{I}_{\mathrm{s}} \exp \frac{\mathrm{~V}_{\mathrm{i}}}{\mathrm{~V}_{\mathrm{T}}}
\end{aligned}
$$

When $\mathrm{V}_{\mathrm{i}} \downarrow \mathrm{I}_{\mathrm{c}} \downarrow .: \mathrm{V}_{\mathrm{o}} \rightarrow \mathrm{V}_{\mathrm{CC}}$
When $\mathrm{V}_{\mathrm{i}} \uparrow, \mathrm{I}_{\mathrm{c}} \uparrow .: \mathrm{V}_{\mathrm{o}} \rightarrow 0$

In the forward active region,

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{S}} \exp \frac{\mathrm{v}_{\mathrm{i}}}{\mathrm{~V}_{\mathrm{T}}} \\
& \mathrm{I}_{\mathrm{b}}=\frac{\mathrm{I}_{\mathrm{c}}}{\beta_{\mathrm{F}}}
\end{aligned}
$$

Small-signal circuit of Common-Emitter

Input resistance $\mathrm{R}_{\mathrm{i}}=\frac{v_{i}}{i_{i}}=\mathrm{r}_{\pi}=\frac{\beta_{\mathrm{o}}}{\mathrm{g}_{\mathrm{m}}}$
Transconductance, $G_{m}=\left.\frac{i_{o}}{v_{i}}\right|_{v_{o}=0}=\frac{g_{m} v_{1}}{v_{i}}=\frac{g_{m} v_{i}}{v_{i}}=g_{m}$

Open-circuit or unloaded voltage gain,
$a_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{i_{0}=0}=-\frac{g_{m} V_{1} r_{o} / / R_{C}}{v_{i}}$
Since $V_{1}=V_{i}$, then $a_{v}=-g_{m} r_{o} / / R_{C}$.
If $\mathrm{R}_{\mathrm{C}} \uparrow \uparrow$, then $\lim _{\mathrm{R}_{\mathrm{c}} \rightarrow \infty} \mathrm{a}_{\mathrm{v}}=-\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{o}}=-\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{V}_{\mathrm{T}}} \frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{C}}}=-\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{V}_{\mathrm{T}}}=-\frac{1}{\eta}$
$I_{c}=$ dc collector current at the operating point
$\mathrm{V}_{\mathrm{T}}=$ thermal voltage
$V_{A}=$ Early voltage
$\eta=\frac{\mathrm{kT}}{\mathrm{qV}_{\mathrm{A}}}$

$\mathrm{lim}_{\mathrm{C}} \lim _{\mathrm{v}} \mathrm{a}_{\mathrm{v}}=-\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{o}}=-\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{V}_{\mathrm{T}}}=-\frac{1}{\eta}$
represents the max. low-freq. voltage gain obtainable from the transistor. It is independent of the C bias current for BJT and the magnitude is ≈ 5000 for typical npn devices.
s/c current gain: $a_{i}=\left.\frac{i_{o}}{i_{i}}\right|_{v_{0}=0}=\frac{g_{m v_{1}}}{\frac{v_{1}}{r_{\pi}}}=g_{m} r_{\pi}=\beta_{o}$

Do example on pg. 178.

Comparison between the MOS and BJT small signal models :

	BJT	MOS
1	r_{π} input resistance	∞ input resistance from G to S
2	g_{m} of BJT is higher than that of MOS biased with the same current. Hence, high-gain amplifiers with BJTs are easier to obtain than with MOS.	

3.3.2 Common-Source (CS) configuration

$$
\begin{aligned}
& V_{i}=0, I_{d}=0 \\
& \rightarrow \text { cutoff operation } \\
& V_{o}=V_{D D}-I_{d} R_{d}=V_{D D}
\end{aligned}
$$

$V_{i}>V_{t}, I_{d}$ flows
\rightarrow active/sat. operation
$V_{0}=V_{D S}$ and $V_{D S}>V_{G S}-V_{t}$
$V_{o}=V_{D D}-I_{d} R_{D}$
For active devices,
$\mathrm{I}_{\mathrm{D}}=\frac{\mathrm{k}^{\prime}}{2} \frac{\mathrm{~W}}{\mathrm{~L}} \mathrm{~V}_{\mathrm{ov}}{ }^{2}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-\frac{\mathrm{k}^{\prime}}{2} \frac{\mathrm{~W}}{\mathrm{~L}} \mathrm{~V}_{\mathrm{ov}}{ }^{2} \mathrm{R}_{\mathrm{D}}$
$\mathrm{k}^{\prime}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}$
$\mathrm{V}_{\mathrm{ov}}=\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}=\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{t}}$
$\mathrm{V}_{\mathrm{i}} \uparrow \mathrm{V}_{\mathrm{ov}} \uparrow \mathrm{V}_{\mathrm{o}} \downarrow$

$V_{o}=V_{D S}$ and $V_{D S}<V_{G S}-V_{t}$
\rightarrow triode operation
$\mathrm{I}_{\mathrm{D}}=\frac{\mathrm{k}^{\prime}}{2} \frac{\mathrm{~W}}{\mathrm{~L}}\left[2\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right) \mathrm{V}_{\mathrm{DS}}-\mathrm{V}_{\mathrm{DS}}{ }^{2}\right]$
Output resistance is low and small-signal voltage gain drops dramatically. The slope of this transfer characteristic at any operating point is the small signal voltage gain at that point. As slope for MOS < slope for BJT,
$\mathrm{a}_{\mathrm{v}(\mathrm{MOS})}<\mathrm{a}_{\mathrm{v}(\mathrm{BJT})}$

$G_{m}=\left.\frac{i_{0}}{v_{i}}\right|_{v_{0}=0}=\frac{g_{m} v_{i}}{v_{i}}=g_{m} . \quad \begin{aligned} & \text { Hence, transconductance of the circuit, } G_{m} \\ & =\text { transconductance of the transistor, } g_{m}\end{aligned}$

$$
\begin{aligned}
& R_{i}=\frac{v_{i}=\infty}{i_{i}} \\
& \left.R_{o}=\left.\frac{v_{t}}{i_{t}}\right|_{v_{i}=0}=r_{o} \right\rvert\, R_{D}
\end{aligned}
$$

o/c or unloaded voltage gain,

$$
\mathrm{a}_{\mathrm{v}}=\left.\frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{v}_{\mathrm{i}}}\right|_{\mathrm{i}_{\mathrm{o}}=0}=-\frac{\mathrm{g}_{\mathrm{m}} \mathrm{v}_{\mathrm{i}}\left(\mathrm{r}_{\mathrm{o}} \| \mathrm{R}_{\mathrm{D}}\right)}{\mathrm{v}_{\mathrm{i}}}=-\mathrm{g}_{\mathrm{m}}\left(\mathrm{r}_{\mathrm{o}} \| \mathrm{R}_{\mathrm{D}}\right)
$$

$\mathrm{a}_{\mathrm{v}}=-\mathrm{g}_{\mathrm{m}}\left(\mathrm{r}_{\mathrm{o}} \| \mathrm{R}_{\mathrm{D}}\right)$
If R_{D} is very large, $R_{D} \lim _{D} a_{v}=-g_{m} r_{o}$ which is the max. possible

UNIVERSITI SAINS MALAYSIA voltage gain of a one-stage CS amplifier.
$\mathrm{g}_{\mathrm{m}}=\sqrt{2 \mathrm{I}_{\mathrm{D}} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{W}}{\mathrm{L}}}$
$\mathrm{g}_{\mathrm{m}} \propto \sqrt{\mathrm{I}_{\mathrm{D}}}$
$\mathrm{r}_{\mathrm{o}}=\frac{1}{\lambda \mathrm{I}_{\mathrm{D}}}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{D}}}$
$\mathrm{r}_{\mathrm{o}} \propto \frac{1}{\mathrm{I}_{\mathrm{D}}}$
$\mathrm{a}_{\mathrm{v}} \propto \frac{\sqrt{\mathrm{I}_{\mathrm{D}}}}{\mathrm{I}_{\mathrm{D}}}$
$\mathrm{a}_{\mathrm{v}} \propto \frac{1}{\sqrt{\mathrm{I}_{\mathrm{D}}}}$
For BJT, $\mathrm{R}_{\mathrm{C}} \rightarrow \infty$
Therefore, max. voltage gain of MOSFET is dependent on the drain current whereas max. voltage gain of BJT is independent of I_{C}.

For MOS:

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{m}}=\mathrm{k}^{\prime} \frac{\mathrm{W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right) \\
& \mathrm{I}_{\mathrm{D}}=\frac{\mathrm{k}^{\prime}}{2} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)^{2} \\
& \frac{\mathrm{~g}_{\mathrm{m}}}{\mathrm{I}_{\mathrm{D}}}=\frac{2}{\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{t}}\right)}=\frac{2}{\mathrm{~V}_{\mathrm{ov}}} \\
& \mathrm{r}_{\mathrm{o}}=\frac{1}{\lambda \mathrm{I}_{\mathrm{D}}}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{D}}}
\end{aligned}
$$

Hence,
$\lim _{D \rightarrow \infty} a_{v}=-g_{m} r_{o}=-g_{m} \frac{V_{A}}{I_{D}}=-\frac{2 V_{A}}{V_{O V}}$

For BJT:

Hence, $\mathrm{R}_{\mathrm{C}} \lim _{\rightarrow \infty} \mathrm{a}_{\mathrm{v}}=-\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{o}}=-\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{V}_{\mathrm{T}}}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{T}}=26 \mathrm{mV} \\
& \mathrm{~V}_{\mathrm{OV}}=200 \mathrm{mV} \\
& \mathrm{a}_{\mathrm{v}^{\prime} \mathrm{MOS}}<\mathrm{a}_{\mathrm{v}-\mathrm{BJT}}
\end{aligned}
$$

(Do example page 182)

3.3.3 Common-Base configuration

I/p signal applied to E. O/p taken from C. B tied to ac gnd.
The hybrid- π model provides an accurate representation of the small-signal behavior of the transistor independent of the circuit configuration. However, for the common-B, the hybrid- π model becomes tougher to analyze as the dependent current source is connected between the i / p and o/p terminals.

To simplify the analysis of a common-B (CB) amplifier, use a Tmodel instead.

The T-model at low freq:

Hvbrid- π model at low frea:

$$
\begin{aligned}
& r_{\mathrm{e}}=\frac{r_{\pi}}{1+\mathrm{g}_{\mathrm{m}} r_{\pi}} \\
& \mathrm{r}_{\pi}=\frac{\beta_{\mathrm{o}}}{\mathrm{~g}_{\mathrm{m}}} \\
& \mathrm{r}_{\mathrm{e}}=\frac{\mathrm{r}_{\pi}}{1+\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\pi}}=\frac{\beta_{\mathrm{o}}}{\mathrm{~g}_{\mathrm{m}}\left(1+\mathrm{g}_{\mathrm{m}} \frac{\beta_{\mathrm{o}}}{g_{m}}\right)}=\frac{1}{\mathrm{~g}_{\mathrm{m}}} \beta_{\mathrm{o}} 1+\beta_{\mathrm{o}}
\end{aligned}=\frac{\alpha_{\mathrm{o}}}{\mathrm{~g}_{\mathrm{m}}} .
$$

